PerkalianBilangan Biner. Pada perkalian biner pada dasarnya sama dengan perkalian desimal,bedanya hanya nilai yang dihasilkan hanya 0 dan 1. Bergeser 1 ke kanan setiap dikalikan 1 bit pengali. Setelah proses perkalian masing-masing bit pengali selesai, lakukan penjumlahan masing-masing kolom bit hasil.
Photo By Polina Tankilevitch on Hai, Sobat Pintar! Pada artikel kali ini, kita akan mempelajari materi operasi hitung pecahan . Kira-kira sobat pintar sudah tahu belum apa itu operasi hitung pecahan dan apa saja sih jenis-jenisnya? Nah, operasi hitung pecahan ini dapat kita temukan di kehidupan sehari-hari lho, Sobat! Salah satu contohnya adalah makanan khas italia, yaitu pizza. Wah.. tentunya sobat pintar sudah tidak asing lagi dong dengan makanan yang satu ini. Pada makanan pizza seringkali kita jumpai cara penyajiannya yaitu dengan memotongnya menjadi beberapa bagian. Nah, cara tersebut merupakan salah satu contoh penerapan operasi hitung pecahan di kehidupan sehari-hari. Operasi hitung pecahan dalam matematika terdiri dari penjumlahan, pengurangan, perkalian, dan pembagian. Cara melakukan operasi hitung pecahan pada penjumlahan dan pengurangan hanya bisa dilakukan pada pecahan dengan penyebutnya yang sama. Sedangkan operasi hitung pecahan pada perkalian dan pembagian dapat dilakukan pada bentuk pecahan biasa dengan penyebut yang sama maupun berbeda. Gimana sih maksudnya, Kak? Eits.. Jangan khawatir, Sobat. Pada artikel ini akan kita pelajari bersama-sama. Yuk simak penjelasan berikut ini! Sebelum kita mempelajari lebih lanjut mengenai operasi hitung pecahan, ada kalanya kita harus tahu terlebih dahulu mengenai pengertian dari pecahan itu sendiri ya, Sobat. Pecahan adalah bagian dari satu keseluruhan suatu kuantitas tertentu. Dalam Bahasa latin atau bahasa Inggris pecahan seringkali disebut dengan fraction atau fractus yang artinya rusak. Pada bentuk bilangan pecahan biasanya dituliskan dalam a/b, contohnya 1/2, 3/4, 5/7, dan lain-lain. Bilangan yang berada di atas garis pemisah disebut dengan pembilang, sedangkan bilangan di bagian bawah disebut sebagai penyebut. Nah, kira-kira sobat pintar masih inget gak nih dengan istilah pembilang dan penyebut? Jadi, pembilang adalah bilangan yang dibagi dan letaknya di atas, sedangkan penyebut adalah bilangan yang membagi dan letaknya di bawah, seperti contoh berikut ini 2/4 Pada contoh tersebut, pembilangnya adalah 2 dan penyebutnya adalah 4. Nah, hal ini perlu diingat ya Sobat, jangan sampai tertukar antara istilah pembilang dan penyebut. Jenis-Jenis Operasi Hitung Pecahan Setelah kita tahu mengenai pengertian dari pecahan, sekarang kita akan mempelajari lebih dalam mengenai jenis-jenis operasi hitung pecahan. Yuk, simak penjelasannya berikut ini. Pecahan Biasa Pecahan yang pertama adalah pecahan biasa. Bentuk pecahan biasa diberikan dalam bentuk a⁄b, yaitu dua bilangan bulat yang dipisahkan sebuah garis lurus. Bilangan pada posisi atas disebut pembilang. Sedangkan yang berada pada posisi bawah disebut penyebut. Contoh pecahan biasa adalah ½, ¾, ¼, dan lain sebagainya. Pecahan Campuran Pecahan yang kedua adalah pecahan campuran. Pecahan campuran merupakan gabungan bilangan bulat dengan pecahan biasa. Bilangan bulat pada pecahan campuran berada sebelum pecahan biasa. Contoh campuran adalah 1½, 2¾, 3⁵⁄₈, dan lain sebagainya. Pecahan Desimal Pecahan yang ketiga adalah pecahan desimal. Pecahan desimal adalah penggunaan tanda koma setelah bilangan bulat pertama. Banyaknya angka setelah tanda koma dapat berjumlah satu, dua, tiga, bahkan sampai tak hingga. Dalam pecahan biasa, nilai pecahan desimal adalah pecahan yang mempunyai penyebut khusus yaitu sepuluh, seratus, seribu, dan seterusnya. Contoh pecahan desimal seperti 0,6; 0,75, dan lain sebagainnya. Pecahan Permil Pecahan yang terakhir adalah pecahan dalam bentuk persen dan permil. Ciri khas dari pecahan dengan bentuk persen adalah adanya tanda % persen dan ‰ permil. Nilai persen % sama dengan per seratus, sedangkan permil ‰ sama dengan per seribu. Tanda % atau ‰ mengikuti setelah bilangan bulat. Contoh pecahan dengan persen dan permil adalah 1%, 35%, 125‰, dan lain sebagainya. Cara Mengerjakan Operasi Hitung Pecahan Dalam mengerjakan operasi hitung pecahan, terdapat beberapa aturan yang perlu Sobat Pintar ketahui. Seperti aturan urutan pengerjaan dilakukan dari pangkat/akar, tanda kurung, perkalian/pembagian, kemudian penjumlahan/pengurangan. Selain itu, sobat pintar perlu memperhatikan langkah-langkah sebagai berikut. Penjumlahan dan Pengurangan Nah, pada operasi penjumlahan dan pengurangan bilangan pecahan terdapat langkah-langkah mudahnya lho. Cara ini sama saja dengan operasi hitung cacah, Sobat. Dalam mengerjakan soal penjumlahan dan pengurangan pada pecahan, perlu dilakukan langkah-langkah sebagai berikut Pertama, samakan terlebih dahulu jenis pecahan, baik itu pecahan biasa, pecahan campuran, persen atau pecahan desimal; Kedua, jika pecahan diubah ke dalam pecahan biasa, dan pecahan tersebut berbeda penyebutnya, maka perlu disamakan terlebih dahulu penyebutnya; Ketiga, karena penjumlahan dan pengurangan kedudukannya sama, maka lakukan operasi penjumlahan dan pengurangan secara berurutan dari kiri ke kanan, kemudian sederhanakan. Gimana sobat masih bingung? Ya sudah, yuk kita kupas lebih dalam dengan menggunakan latihan soal dan pembahasannya. Contoh 1 1/4+1/4=⋯ Pembahasan Karena penjumlahan dua bilangan tersebut memiliki penyebut yang sama, maka dapat langsung dijumlahkan pembilangnya, sehingga 1/4+1/4= 1+1/4=2/4 Contoh 2 4/2-1/2=⋯ Pembahasan Karena pengurangan dua bilangan tersebut memiliki penyebut yang sama, maka dapat langsung dikurangkan pembilangnya, sehingga 4/2-1/2= 4-1/2=3/2 Contoh 3 1/2+3/4=⋯ Pembahasan Karena penjumlahan dua bilangan tersebut memiliki penyebut yang berbeda, maka langkah pertama adalah samakan terlebih dahulu penyebutnya dengan cara mencari KPK, kemudian jumlahkan pembilangnya, sehingga KPK dari penyebut 2 dan 4 adalah 8, Kemudian menjumlahkan pembilangnya. 1/2+3/4= 1+3/8=4/8 Perkalian dan Pembagian Pecahan Perkalian Pecahan Operasi hitung pecahan berikutnya adalah perkalian pecahan. Pada perkalian pecahan, Sobat Pintar tidak perlu menyamakan penyebutnya terlebih dahulu. Perkalian pecahan dilakukan antar pembilang dengan pembilang dan penyebut dengan penyebut. Sebagai contoh berikut 3/5+3/4= 3×3/5×4=9/20 Pembagian Pecahan Pada operasi pembagian pecahan cara yang dilakukan adalah membalik pecahan pada posisi akhir dan merubah tanda menjadi kali. Selanjutnya operasi hitung yang dilakukan sama seperti pada perkalian. Caranya dengan mengalikan antara pembilang dengan pembilang dan penyebut dengan penyebut. Selain itu, operasi hitung pembagian pecahan juga dapat dilakukan dengan mengalikan pembilang pecahan pertama dengan penyebut pecahan kedua dan penyebut pertama dengan pembilang kedua. Seperti pada contoh berikut ini 4/54/3=4/5×3/4= 12/20 Nah, Sobat, materi dan contoh soal mengenai bilangan pecahan ternyata mudah, bukan? Selain materi bilangan pecahan, kalian juga bisa belajar tentang materi-materi lainnya melalui aplikasi Aku Pintar di fitur Belajar Pintar mata pelajaran Matematika. Sampai bertemu di pembahasan berikutnya, Sobat Pintar! Writer Wahyu Agung Mustikaning Romadhon Editor Sophia
Perkaliandan Pembagian Penjumlahan dan Pengurangan C. Operasi Hitung Campuran Operasi hitung campuran merupakan gabungan dari dua atau lebih operasi hitung biasa. Untuk menyelesaikan operasi hitung campuran, harus berpatokan pada urutan operasi hitung yang telah dijelaskan di atas.
- Pada dasarnya matriks juga dapat dioperasikan seperti halnya operasi aljabar biasa. Tetapi terdapat beberapa aturan dalam operasi matriks yang harus diperhatikan. Pada pembahasan ini kita akan mempelajari operasi pada matriks, yang terdiri dari operasi penjumlahan, pengurangan, dan Penjumlahan Matriks Dua buah matriks dapat dijumlahkan apabila keduanya memiliki ordo yang sama. Hasil operasi penjumlahannya adalah matriks baru yang memiliki ordo sama dengan matriks semula, dengan elemen-elemennya terdiri dari hasil penjumlahan elemen-elemen pada matriks. Secara matematis, operasi penjumlahan matriks dapat diasumsikan sebagai berikut Baca juga Metode Determinan dan Inversi Matriks SPLTV Operasi Pengurangan Matriks Penguragan matriks memiliki konsep yang sama dengan penjumlahan. Dua buah matriks dapat dikurangkan apabila keduanya memiliki ordo yang sama. Hasil operasi pengurangannya adalah matriks baru yang memiliki ordo sama dengan matriks semula, dengan elemen-elemennya terdiri dari hasil pengurangan dengan elemen-elemen pada matriks. Secara matematis, operasi pengurangan matriks dapat diasumsikan sebagai berikut Operasi Perkalian Matriks Perkalian Matriks dengan Skalar Perkalian matriks dengan skalar dilakukan dengan cara mengalikan setiap elemen matriks dengan skalar tersebut, dan menghasilkan matriks dengan ordo seperti matriks yang dikalikan. Baca juga Matriks, Jawaban Soal TVRI 24 Agustus 2020 untuk SMA Secara matematis, operasi perkalian matriks dengan skalar dapat diasumsikan sebagai berikut Perkalian Matriks dengan Matriks Dilansir dari Encyclopedia Britannica, perkalian matriks dengan matriks yang kita asumsikan sebagai matriks A dan matriks B memiliki syarat, yaitu kolom matriks A harus sama dengan baris matriks B. Sedangkan ordo dari hasil perkalian matriks tersebut adalah banyaknya baris matriks A dikali dengan banyaknya kolom matriks B. Secara matematis, bentuk ordo pada perkalian matriks dengan matriks adalah FAUZIYYAH Bentuk ordo pada perkalian matriks dengan matriks Baca juga Menentukan Matriks X, Jawaban Soal TVRI 24 Agustus 2020 untuk SMAOperasi perkalian matriks dengan matriks dapat diasumsikan sebagai berikut FAUZIYYAH Operasi perkalian matriks dengan matriks Dapatkan update berita pilihan dan breaking news setiap hari dari Mari bergabung di Grup Telegram " News Update", caranya klik link kemudian join. Anda harus install aplikasi Telegram terlebih dulu di ponsel.
Denganhanya menggunakan penjumlahan-penjumlahan pada slide sebelumnya, kita dapat melakukan penjumlahan biner seperti ditunjukkan di bawah ini : 1 1111 --> "simpanan 1" ingat kembali aturan di atas 01011011 --> bilangan biner untuk 91 01001110 --> bilangan biner untuk 78 ------+ 10101001 --> Jumlah dari 91 + 78 = 169.
Blog Koma - Materi Rumus Perkalian, Penjumlahan, dan Pengurangan Trigonometri merupakan kelanjutan dari materi "Rumus Trigonometri untuk Jumlah dan Selisih Dua Sudut". Silahkan juga baca materi "Perbandingan Trigonometri Sudut-sudut Berelasi". Rumus Perkalian, Penjumlahan, dan Pengurangan Trigonometri ini biasanya akan banyak kita gunakan pada materi integral dan limit. Jadi, harus kita ingat rumus-rumus ini karena akan sangat berguna untuk materi lainnya dalam matematika. Rumus Perkalian Trigonometri untuk Sinus dan Cosinus Misalkan diketahui dua sudut yaitu A dan B, berikut rumus perkalian antara sinus dan cosinus pada sudut A dan B $ \begin{align} \sin A \cos B & = \frac{1}{2}[ \sin A+B + \sin A- B ] \\ \cos A \sin B & = \frac{1}{2}[ \sin A+B - \sin A- B ] \\ \cos A \cos B & = \frac{1}{2}[ \cos A+B + \cos A- B ] \\ \sin A \sin B & = - \frac{1}{2}[ \cos A+B - \cos A- B ] \end{align} $ Pembuktian Rumus Perkalian trigonometri untuk sinus dan cosinus *. Kita menggunakan rumus jumlah dan selisih sudut, yaitu $ \begin{align} \sin A + B & = \sin A \cos B + \cos A \sin B \\ \sin A - B & = \sin A \cos B - \cos A \sin B \\ \cos A+B & = \cos A \cos B - \sin A \sin B \\ \cos A-B & = \cos A \cos B + \sin A \sin B \\ \end{align} $ $\clubsuit $ Pembuktian Rumus $ \sin A \cos B = \frac{1}{2}[ \sin A+B + \sin A- B ] $ $ \begin{array}{cc} \sin A + B = \sin A \cos B + \cos A \sin B & \\ \sin A - B = \sin A \cos B - \cos A \sin B & + \\ \hline \sin A + B + \sin A - B = 2 \sin A \cos B & \end{array} $ Sehingg terbukti $ \sin A \cos B = \frac{1}{2}[ \sin A + B + \sin A - B ] $ $\clubsuit $ Pembuktian Rumus $ \cos A \sin B = \frac{1}{2}[ \sin A+B - \sin A- B ] $ $ \begin{array}{cc} \sin A + B = \sin A \cos B + \cos A \sin B & \\ \sin A - B = \sin A \cos B - \cos A \sin B & - \\ \hline \sin A + B - \sin A - B = 2 \cos A \sin B & \end{array} $ Sehingg terbukti $ \cos A \sin B = \frac{1}{2}[ \sin A+B - \sin A- B ] $ $\clubsuit $ Pembuktian Rumus $ \cos A \cos B = \frac{1}{2}[ \cos A+B + \cos A- B ] $ $ \begin{array}{cc} \cos A+B = \cos A \cos B - \sin A \sin B & \\ \cos A-B = \cos A \cos B + \sin A \sin B & + \\ \hline \cos A + B + \cos A - B = 2 \cos A \cos B & \end{array} $ Sehingg terbukti $ \cos A \cos B = \frac{1}{2}[ \cos A+B + \cos A- B ] $ $\clubsuit $ Pembuktian Rumus $ \sin A \sin B = -\frac{1}{2}[ \cos A+B - \cos A- B ] $ $ \begin{array}{cc} \cos A+B = \cos A \cos B - \sin A \sin B & \\ \cos A-B = \cos A \cos B + \sin A \sin B & - \\ \hline \cos A + B - \cos A - B = -2 \sin A \sin B & \end{array} $ Sehingg terbukti $ \sin A \sin B = -\frac{1}{2}[ \cos A+B - \cos A- B ] $ Contoh 1. Tentukan nilai dari trigonometri berikut a. $ \sin 75^\circ \cos 15^\circ $ b. $ \cos 67\frac{1}{2}^\circ \sin 22\frac{1}{2}^\circ $ c. $ \cos 105^\circ \cos 15^\circ $ d. $ \sin 127\frac{1}{2}^\circ \sin 97\frac{1}{2}^\circ $ Penyelesaian a. Gunakan rumus $ \sin A \cos B = \frac{1}{2}[ \sin A+B + \sin A- B ] $ dengan besar sudut $ A = 75^\circ \, $ dan $ B = 15^\circ $ $ \begin{align} \sin A \cos B & = \frac{1}{2}[ \sin A+B + \sin A- B ] \\ \sin 75^\circ \cos 15^\circ & = \frac{1}{2}[ \sin 75^\circ +15^\circ + \sin 75^\circ - 15^\circ ] \\ & = \frac{1}{2}[ \sin 90^\circ + \sin 60^\circ ] \\ & = \frac{1}{2}[ 1 + \frac{1}{2}\sqrt{3} ] \\ & = \frac{1}{4} 2 + \sqrt{3} \end{align} $ Jadi, nilai $ \sin 75^\circ \cos 15^\circ = \frac{1}{4} 2 + \sqrt{3} $ b. Gunakan rumus $ \cos A \sin B = \frac{1}{2}[ \sin A+B - \sin A- B ] $ dengan besar sudut $ A = 67\frac{1}{2}^\circ \, $ dan $ B = 22\frac{1}{2}^\circ $ $ \begin{align} \cos A \sin B & = \frac{1}{2}[ \sin A+B - \sin A- B ] \\ \cos 67\frac{1}{2}^\circ \sin 22\frac{1}{2}^\circ & = \frac{1}{2}[ \sin 67\frac{1}{2}^\circ + 22\frac{1}{2}^\circ - \sin 67\frac{1}{2}^\circ - 22\frac{1}{2}^\circ ] \\ & = \frac{1}{2}[ \sin 90^\circ - \sin 45^\circ ] \\ & = \frac{1}{2}[ 1 - \frac{1}{2} \sqrt{2} ] \\ & = \frac{1}{4} 2 - \sqrt{2} \end{align} $ Jadi, nilai $ \cos 67\frac{1}{2}^\circ \sin 22\frac{1}{2}^\circ = \frac{1}{4} 2 - \sqrt{2} $ c. Gunakan rumus $ \cos A \cos B = \frac{1}{2}[ \cos A+B + \cos A- B ] $ dengan besar sudut $ A = 105^\circ \, $ dan $ B = 15^\circ $ $ \begin{align} \cos A \cos B & = \frac{1}{2}[ \cos A+B + \cos A- B ] \\ \cos 105^\circ \cos 15^\circ & = \frac{1}{2}[ \cos 105^\circ + 15^\circ + \cos 105^\circ - 15^\circ ] \\ & = \frac{1}{2}[ \cos 120^\circ + \cos 90^\circ ] \\ & = \frac{1}{2}[ - \cos 60^\circ + 0 ] \\ & = \frac{1}{2}[ - \frac{1}{2} + 0 ] \\ & = - \frac{1}{4} \end{align} $ Jadi, nilai $ \cos 105^\circ \cos 15^\circ = - \frac{1}{4} $ d. Gunakan rumus $ \sin A \sin B = -\frac{1}{2}[ \cos A+B - \cos A- B ] $ dengan besar sudut $ A = 127\frac{1}{2}^\circ \, $ dan $ B = 97\frac{1}{2}^\circ $ $ \begin{align} \sin A \sin B & = -\frac{1}{2}[ \cos A+B - \cos A- B ] \\ \sin 127\frac{1}{2}^\circ \sin 97\frac{1}{2}^\circ & = -\frac{1}{2}[ \cos 127\frac{1}{2}^\circ + 97\frac{1}{2}^\circ - \cos 127\frac{1}{2}^\circ - 97\frac{1}{2}^\circ ] \\ & = -\frac{1}{2}[ \cos 225^\circ - \cos 30^\circ ] \\ & = -\frac{1}{2}[ \cos 180^\circ + 45^\circ - \cos 30^\circ ] \\ & = -\frac{1}{2}[ -\cos 45^\circ - \cos 30^\circ ] \\ & = -\frac{1}{2}[ -\frac{1}{2}\sqrt{2} - \frac{1}{2}\sqrt{3} ] \\ & = \frac{1}{4} \sqrt{2} + \sqrt{3} \end{align} $ Jadi, nilai $ \sin 127\frac{1}{2}^\circ \sin 97\frac{1}{2}^\circ = \frac{1}{4} \sqrt{2} + \sqrt{3} $ Rumus Trigonometri Penjumlahan dan Pengurangan Misalkan diketahui dua sudut P dan Q, berlaku rumus penjumlahan dan pengurangannya $ \begin{align} \sin P + \sin Q & = 2 \sin \frac{1}{2}P+Q \cos \frac{1}{2}P-Q \\ \sin P - \sin Q & = 2 \cos \frac{1}{2}P+Q \sin \frac{1}{2}P-Q \\ \cos P + \cos Q & = 2 \cos \frac{1}{2}P+Q \cos \frac{1}{2}P-Q \\ \cos P - \cos Q & = -2 \sin \frac{1}{2}P+Q \sin \frac{1}{2}P-Q \\ \tan P + \tan Q & = \frac{2\sinP+Q}{\cos P+Q + \cos P-Q } \\ \tan P - \tan Q & = \frac{2\sinP-Q}{\cos P+Q + \cos P-Q } \end{align} $ Pembuktian rumus penjumlahan dan pengurangan trigonometri *. Kita menggunakan rumus perkalian trigonometri sebelumnya. *. Misalkan $ A + B = P \, $ dan $ A - B = Q $ , maka dengan eliminasi kedua persamaan kita peroleh $ A = \frac{1}{2}P+Q \, $ dan $ A = \frac{1}{2}P-Q $ *. Substitusi bentuk permisalan di atas ke persamaan yang digunakan. $\spadesuit $ Pembuktian Rumus $ \sin P + \sin Q = 2 \sin \frac{1}{2}P+Q \cos \frac{1}{2}P-Q $ $ \begin{align} \sin A \cos B & = \frac{1}{2}[ \sin A+B + \sin A- B ] \\ \sin \frac{1}{2}P+Q \cos \frac{1}{2}P-Q & = \frac{1}{2}[ \sin P + \sin Q ] \\ 2\sin \frac{1}{2}P+Q \cos \frac{1}{2}P-Q & = \sin P + \sin Q \end{align} $ Sehingga tebukti rumus $ \sin P + \sin Q = 2 \sin \frac{1}{2}P+Q \cos \frac{1}{2}P-Q $ $\spadesuit $ Pembuktian Rumus $ \sin P - \sin Q = 2 \cos \frac{1}{2}P+Q \sin \frac{1}{2}P-Q $ $ \begin{align} \cos A \sin B & = \frac{1}{2}[ \sin A+B - \sin A- B ] \\ \cos \frac{1}{2}P+Q \sin \frac{1}{2}P - Q & = \frac{1}{2}[ \sin P - \sin Q ] \\ 2 \cos \frac{1}{2}P+Q \sin \frac{1}{2}P - Q & = \sin P - \sin Q \end{align} $ Sehingga tebukti rumus $ \sin P - \sin Q = 2 \cos \frac{1}{2}P+Q \sin \frac{1}{2}P-Q $ $\spadesuit $ Pembuktian Rumus $ \cos P + \cos Q = 2 \cos \frac{1}{2}P+Q \cos \frac{1}{2}P-Q $ $ \begin{align} \cos A \cos B & = \frac{1}{2}[ \cos A+B + \cos A- B ] \\ \cos \frac{1}{2}P+Q \cos \frac{1}{2}P-Q & = \frac{1}{2}[ \cos P + \cos Q ] \\ 2\cos \frac{1}{2}P+Q \cos \frac{1}{2}P-Q & = \cos P + \cos Q \end{align} $ Sehingga tebukti rumus $ \cos P + \cos Q = 2 \cos \frac{1}{2}P+Q \cos \frac{1}{2}P-Q $ $\spadesuit $ Pembuktian Rumus $ \cos P - \cos Q = -2 \sin \frac{1}{2}P+Q \sin \frac{1}{2}P-Q $ $ \begin{align} \sin A \sin B & = -\frac{1}{2}[ \cos A+B - \cos A- B ] \\ \sin \frac{1}{2}P+Q \sin \frac{1}{2}P-Q & = -\frac{1}{2}[ \cos P - \cos Q ] \\ -2\sin \frac{1}{2}P+Q \sin \frac{1}{2}P-Q & = \cos P - \cos Q \end{align} $ Sehingga tebukti rumus $ \cos P - \cos Q = -2 \sin \frac{1}{2}P+Q \sin \frac{1}{2}P-Q $ $\spadesuit $ Pembuktian Rumus $ \tan P + \tan Q = \frac{2\sinP+Q}{\cos P+Q + \cos P-Q } $ *. Gunakan rumus $ \sin P+Q = \sin P\cos Q + \cos P \sin Q \, $ dan $ 2 \cos P \cos Q = \cos P+Q + \cos P-Q $ $ \begin{align} \tan P + \tan Q & = \frac{\sin P}{\cos P} + \frac{\sin Q}{\cos Q} \\ & = \frac{\sin P\cos Q}{\cos P \cos Q} + \frac{\cos P \sin Q }{\cos P \cos Q} \\ & = \frac{\sin P\cos Q + \cos P \sin Q }{\cos P \cos Q} \\ & = \frac{\sin P+Q }{\cos P \cos Q} \\ & = \frac{2\sin P+Q }{2\cos P \cos Q} \\ & = \frac{2\sin P+Q }{\cos P+Q + \cos P-Q} \end{align} $ Sehingga tebukti rumus $ \tan P + \tan Q = \frac{2\sinP+Q}{\cos P+Q + \cos P-Q } $ $\spadesuit $ Pembuktian Rumus $ \tan P - \tan Q = \frac{2\sinP-Q}{\cos P+Q + \cos P-Q } $ *. Gunakan rumus $ \sin P-Q = \sin P\cos Q - \cos P \sin Q \, $ dan $ 2 \cos P \cos Q = \cos P+Q + \cos P-Q $ $ \begin{align} \tan P - \tan Q & = \frac{\sin P}{\cos P} - \frac{\sin Q}{\cos Q} \\ & = \frac{\sin P\cos Q}{\cos P \cos Q} - \frac{\cos P \sin Q }{\cos P \cos Q} \\ & = \frac{\sin P\cos Q - \cos P \sin Q }{\cos P \cos Q} \\ & = \frac{\sin P-Q }{\cos P \cos Q} \\ & = \frac{2\sin P-Q }{2\cos P \cos Q} \\ & = \frac{2\sin P-Q }{\cos P+Q + \cos P-Q} \end{align} $ Sehingga tebukti rumus $ \tan P + \tan Q = \frac{2\sinP-Q}{\cos P+Q + \cos P-Q } $ Contoh 2. Tentukan nilai dari a. $ \sin 105^\circ + \sin 15 ^\circ $ b. $ \sin 105^\circ - \sin 15 ^\circ $ c. $ \cos 105^\circ + \cos 15 ^\circ $ d. $ \tan 105^\circ + \tan 15 ^\circ $ Penyelesaian a. Nilai $ \sin 105^\circ + \sin 15 ^\circ $ $\begin{align} \sin P + \sin Q & = 2 \sin \frac{1}{2}P+Q \cos \frac{1}{2}P-Q \\ \sin 105^\circ + \sin 15 ^\circ & = 2 \sin \frac{1}{2}105^\circ+ 15 ^\circ \cos \frac{1}{2}105^\circ-15 ^\circ \\ & = 2 \sin 60 ^\circ \cos 45 ^\circ \\ & = 2 .\frac{1}{2}\sqrt{3} . \frac{1}{2}\sqrt{2} \\ & = \frac{1}{2}\sqrt{6} \end{align} $ Jadi, nilai $ \sin 105^\circ + \sin 15 ^\circ = \frac{1}{2}\sqrt{6} $ b. Nilai $ \sin 105^\circ - \sin 15 ^\circ $ $\begin{align} \sin P - \sin Q & = 2 \cos \frac{1}{2}P+Q \sin \frac{1}{2}P-Q \\ \sin 105^\circ - \sin 15 ^\circ & = 2 \cos \frac{1}{2}105^\circ+ 15 ^\circ \sin \frac{1}{2}105^\circ-15 ^\circ \\ & = 2 \cos 60 ^\circ \sin 45 ^\circ \\ & = 2 .\frac{1}{2} . \frac{1}{2}\sqrt{2} \\ & = \frac{1}{2}\sqrt{2} \end{align} $ Jadi, nilai $ \sin 105^\circ - \sin 15 ^\circ = \frac{1}{2}\sqrt{2} $ c. Nilai $ \cos 105^\circ + \cos 15 ^\circ $ $\begin{align} \cos P + \cos Q & = 2 \cos \frac{1}{2}P+Q \cos \frac{1}{2}P-Q \\ \cos 105^\circ + \cos 15 ^\circ & = 2 \cos \frac{1}{2}105^\circ+ 15 ^\circ \cos \frac{1}{2}105^\circ-15 ^\circ \\ & = 2 \cos 60 ^\circ \cos 45 ^\circ \\ & = 2 .\frac{1}{2} . \frac{1}{2}\sqrt{2} \\ & = \frac{1}{2}\sqrt{2} \end{align} $ Jadi, nilai $ \cos 105^\circ + \cos 15 ^\circ = \frac{1}{2}\sqrt{2} $ d. Nilai $ \tan 105^\circ + \tan 15 ^\circ $ $\begin{align} \tan P + \tan Q & = \frac{2\sinP+Q}{\cos P+Q + \cos P-Q } \\ \tan 105^\circ + \tan 15 ^\circ & = \frac{2\sin105^\circ +15 ^\circ }{\cos 105^\circ + 15 ^\circ + \cos 105^\circ - 15 ^\circ } \\ & = \frac{2\sin120^\circ }{\cos 120 ^\circ + \cos 90 ^\circ } \\ & = \frac{2\sin180^\circ - 60^\circ }{\cos 180^\circ - 60^\circ + \cos 90 ^\circ } \\ & = \frac{2\sin 60^\circ }{ - \cos 60^\circ + \cos 90 ^\circ } \\ & = \frac{2 . \frac{1}{2} \sqrt{3} }{ - \frac{1}{2} + 0 } \\ & = \frac{\sqrt{3} }{ - \frac{1}{2} } \\ & = -2\sqrt{3} \end{align} $ Jadi, nilai $ \tan 105^\circ + \tan 15 ^\circ = -2\sqrt{3} $ 3. Tentukan nilai dari a. $ \cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ $ b. $ \sin 84^\circ \tan 42 ^\circ + \cos 84^\circ $ Penyelesaian a. Misalkan nilai $ \cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ = x $ artinya kita mencari nilai $ x \, $ . *. Gunakan sudut rangkap sinus $ \sin 2A = 2\sin A \cos A $ Kedua ruas dikalikan $ 2\sin 20^\circ \, $ dan rumus $ 2\sin A \cos A = \sin 2A $ $ \begin{align} x & = \cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ \\ 2\sin 20^\circ. x & = 2\sin 20^\circ . \cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ \\ 2\sin 20^\circ. x & = 2\sin 20^\circ \cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ \\ 2\sin 20^\circ. x & = \sin 2 \times 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ \\ 2\sin 20^\circ. x & = \sin 40^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ \\ 2\sin 20^\circ. x & = \frac{1}{2}2 \sin 40^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ \\ 2\sin 20^\circ. x & = \frac{1}{2} \sin 2 \times 40^\circ \cos 60^\circ \cos 80^\circ \\ 2\sin 20^\circ. x & = \frac{1}{2} \sin 80^\circ \cos 60^\circ \cos 80^\circ \\ 2\sin 20^\circ. x & = \frac{1}{2}. \frac{1}{2} 2\sin 80^\circ \cos 80^\circ \cos 60^\circ \\ 2\sin 20^\circ. x & = \frac{1}{4} \sin 2 \times 80^\circ \cos 60^\circ \\ 2\sin 20^\circ. x & = \frac{1}{4} \sin 160^\circ \cos 60^\circ \\ 2\sin 20^\circ. x & = \frac{1}{4} \sin 180^\circ - 20^\circ \cos 60^\circ \\ 2\sin 20^\circ. x & = \frac{1}{4} \sin 20^\circ . \frac{1}{2} \\ 2\sin 20^\circ. x & = \frac{1}{8} \sin 20^\circ \\ x & = \frac{ \frac{1}{8} \sin 20^\circ }{ 2\sin 20^\circ} \\ x & = \frac{1}{16} \end{align} $ Jadi, nilai $ \cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ = \frac{1}{16} $ b. Nilai $ \sin 84^\circ \tan 42 ^\circ + \cos 84^\circ $ *. Gunakan $ \sin 2 A = 2\sin A \cos A \, $ dan $ \tan A = \frac{\sin A}{\cos A } $ serta $ \cos 2A = 1 - 2\sin ^2 A $ *. Menenylesaikan soal $ \begin{align} \sin 84^\circ \tan 42 ^\circ + \cos 84^\circ & = \sin 2 \times 42^\circ \tan 42 ^\circ + \cos 2 \times 42^\circ \\ & = 2\sin 42^\circ \cos 42^\circ . \frac{\sin 42 ^\circ}{\cos 42 ^\circ} + 1 - 2\sin ^2 42^\circ \\ & = 2\sin ^2 42^\circ + 1 - 2\sin ^2 42^\circ \\ & = 1 \end{align} $ Jadi, nilai $ \sin 84^\circ \tan 42 ^\circ + \cos 84^\circ = 1 $ . 4. Tentukan jumlah $ n \, $ suku pertama dari deret $ \sin a + \sin a + b + \sin a+2b + \sin a + 3b + ... + \sin a + n-1b $ Pnyelesaian *. Soal ini adalah jumlah deret dengan suku-suku berbentuk trigonometri. *. Jumlah $ n \, $ suku pertama $ s_n$ maksudnya $ s_n = \sin a + \sin a + b + \sin a+2b + \sin a + 3b + ... + \sin a + n-1b $ *. Kita gunakan rumus $ \sin A \sin B = -\frac{\cos A+B - \cos A - B} \, $ atau $ 2\sin A \sin B = \cos A- B - \cos A + B $ *. Semua suku kita kalilikan dengan $ 2 \sin \frac{b}{2} \, $ , kemudian dijumlahkan semua. $ \begin{array}{cccccc} 2\sin a \sin \frac{b}{2} & = & \cos a - \frac{b}{2} & - & \cos a + \frac{b}{2} & \\ 2\sin a + b \sin \frac{b}{2} & = & \cos a + \frac{b}{2} & - & \cos a + \frac{3b}{2} & \\ 2\sin a + 2b \sin \frac{b}{2} & = & \cos a + \frac{3b}{2} & - & \cos a + \frac{5b}{2} & \\ \vdots & & \vdots & & \vdots & \\ 2\sin a + n-1b \sin \frac{b}{2} & = & \cos a + n - \frac{3}{2}b & - & \cos a + n - \frac{1}{2}b & + \\ \hline \\ 2 \sin \frac{b}{2} s_n & = & \cos a - \frac{b}{2} & - & \cos a + n - \frac{1}{2}b & \end{array} $ *. Gunakan rumus $ \cos A - \cos B = -2 \sin \frac{1}{2}A + B \sin \frac{1}{2}A-B $ $ \begin{align} 2 \sin \frac{b}{2} s_n & = \cos a - \frac{b}{2} - \cos a + n - \frac{1}{2}b \\ & = -2 \sin \frac{1}{2} \left a - \frac{b}{2} + a + n - \frac{1}{2}b \right \sin \frac{1}{2} \left a - \frac{b}{2} - a + n - \frac{1}{2}b \right \\ 2 \sin \frac{b}{2} s_n & = 2 \sin \left a + \frac{n-1}{2} b \right \sin \left \frac{n}{2} b \right \\ \sin \frac{b}{2} s_n & = \sin \left a + \frac{n-1}{2} b \right \sin \left \frac{n}{2} b \right \\ s_n & = \frac{ \sin \left a + \frac{n-1}{2} b \right \sin \left \frac{n}{2} b \right }{\sin \frac{b}{2}} \end{align} $ Jadi, jumlah $ n \, $ suku pertamanya adalah $ \begin{align} s _ n = \frac{ \sin \left a + \frac{n-1}{2} b \right \sin \left \frac{n}{2} b \right }{\sin \frac{b}{2}} \end{align} $
Untukmempermudah mempelajari operasi hitung bilangan kuadrat, pembelajaran kali ini akan dibagi menjadi empat bagian yaitu penjumlahan, pengurangan, perkalian, dan pembagian bilangan kuadrat. Untuk mempelajari operasi hitung campuran secara umum dapat dibaca pada halaman Operasi hitung Campuran di Sekolah Dasar.
Operator Bilangan Hasil penjumlahan dan pengurangan hanya mempunyai satu bilangan yang diragukan angka perkiraan. Jika seluruh bilangan tidak digaris bawahi, angka terakhir adalah angka yang diragukan. a. 25300 g angka 3 diragukan 4140 g angka 0 diragukan _______ + 29440 g > mempunyai dua angka diragukan Karena hasil akhir harus mempunyai satu bilangan yang diragukan, bilangan tersebut dibulatkan menjadi b. 152,227 cm angka 7 diragukan 22,5 cm angka 5 diragukan ___________ + 174,727 cm > hasil akhir dibulatkan menjadi 174,7 cm c. 523,467 cm 15,300 cm ___________ - 508,167 cm > hasil akhir dibulatkan menjadi 508,2 cm d. 430 g 255 g _______ - 175 g > hasil akhir dibulatkan menjadi 180 g satu angka diragukan MATERI TERKAIT 👇👇👇 Hakikat Ilmu Fisika adalah Pengukuran, Besaran & Satuan, dan Dimensi Aspek-aspek yang Perlu Diperhatikan dalam Pengukuran Angka Penting, Bilangan Penting & Bilangan Pasti, dan Pembulatan Angka Pengukuran Besaran Panjang Pengukuran Besaran Massa Pengukuran Besaran Waktu 2. Perkalian dan Pembagian dengan Bilangan Penting Jumlah angka penting dari hasil penjumlahan, pengurangan, perkalian, pembagian, atau gabungan di antaranya adalah sebanyak salah satu bilangan penting yang memiliki angka penting paling sedikit. Selain itu, hasil perhitungan hanya boleh mengandung satu angka yang diragukan angka perkiraan. a. Perkalian angka penting 1 2,35 cm x 2,4 cm = 5,64 cm2 = 5,6 cm2 dua angka penting 2 0,534 cm x 5,2 cm = 2,7768 cm2 = 2,8 cm2 dua angka penting 3 0,323 cm x 2,5 cm = 0,8075 cm2 = 0,81 cm2 dua angka penting 4 12,5 cm x 4,5 cm x 1,23 cm = 69, 1875 cm3 = 69 cm3 dua angka penting 5 16,40 cm x 4,5 cm x 3,26 cm = 240, 588 cm3 = 240 cm3 dua angka penting 6 Perkalian angka penting dengan bilangan pasti dicontohkan sebagai berikut. Tebal batu adalah 10,33 cm. Jika 17 batu disusun ke atas, tinggi susunannya adalah 10,33 cm x 17 = 175,61 cm menjadi 175,6 cm empat angka penting b. Pembagian angka penting 1 g 2,4 cm3 = g/ cm3 = = 2,2 x 103 g/ cm3 dua angka penting 2 dyne 234 cm2 = 57,905983 dyne/ cm3 = 57,9 dyne/ cm3 tiga angka penting c. Menarik akar angka penting dicontohkan sebagai berikut 1 √625 cm = 25,0 cm tiga angka penting 2 3√78 cm = 4,2726 cm = 4,3 cm dua angka penting d. Bilangan π phi besarnya 3,14159265 Untuk perhitungan dalam fisika, banyaknya angka di belakang koma dari bilangan π bergantung pada besarnya ketelitian alat ukur yang digunakan. 1 Keliling lingkaran dengan jari-jari r = 12,35 cm adalah S = 2 π r = 2 x 3,14 x 12,35 S = 77,58 cm empat angka penting 2 Luas lingkaran dengan jari-jari 12,35 cm adalah A = π r2 = 3,141 x 12,352 = 479,07317 cm2 A = 479,1 cm2 empat angka penting Sumber Purwanto, B & Azam, M. 2014. Fisika 1 untuk kelas X SMA dan MA Kelompok Peminatan Matematika dan Ilmu Alam “Kurikulum 2013”. Solo PT Wangsa Jatra Lestari Penjumlahan angka penting, Pengurangan angka penting, Perkalian angka penting, Pembagian Angka Penting, operator angka penting, menarik akar angka penting, aturan penulisan angka penting
Aturankhusus pada pengurangan adalah apabila suatu bilangan dikurangi dengan bilangan bulat negatif, maka operasinya akan berubah menjadi penjumlahan. Contoh: 4 - 1 = 3. 2 - 7 = -5. 3 - (-1) = 3 + 1 = 4. Perkalian. Perkalian bilangan bulat disimbolkan dengan tanda kali "×". Perkalian antara a dan b berarti penjumlahan a sebanyak b
Blog Koma - Halow teman-teman, bagaimana kabarnya hari ini? Mudah-mudahan baik-baik saja. Pada artikel kali ini kita akan mempelajari materi yang berkaitan dengan kaidah pencacahan yaitu menentukan banyaknya cara dalam menyusun suatu percobaan. Kaidah pencacahan terdiri dari aturan perkalian dan aturan penjumlahan, permutasi dan kombinasi. Untuk khusus pada kesempatan ini, kita akan membahas lebih mendetail tentang Aturan Perkalian, Aturan Penjumlahan, dan Faktorial. Materi faktorial digunakan untuk masalah permutasi dan kombinasi. Aturan Perkalian pada kaidah pencacahan Jika terdapat $ n \, $ unsur yang tersedia, $k_1 = \, $ banyak cara untuk menyusun unsur pertama $ k_2 = \, $ banyak cara untuk menyusun unsur kedua setelah unsur pertama tersusun $ k_3 = \, $ banyak cara untuk menyusun unsur ketiga setelah unsur kedua tersusun dan seterusnya sampai $k_n = \, $ banyak cara untuk menyusun unsur ke-$n$ setelah objek $ n - 1 $ unsur sebelumnya tersusun Maka banyak cara untuk menyusun $ n \, $ unsur yang tersedia adalah $ k_1 \times k_2 \times k_3 \times ... \times k_n $ Catatan Aturan perkalian biasanya digunakan untuk beberapa kejadian yang semuanya "SEKALIGUS TERJADI" dan biasanya menggunakan kata penghubung "DAN" Contoh soal penggunaan aturan perkalian 1. Budi mempunyai 3 buah baju berwarna putih, cokelat, dan batik. Ia juga memiliki 2 buah celana warna hitam dan cokelat yang berbeda. Ada berapa pasang baju dan celana dapat dipakai dengan pasangan yang berbeda? Penyelesaian *. Cara I Mendaftarkan semua pasangan dengan diagram Berikut diagram kemungkinan pasangan baju dan celana. Dari diagram di atas, banyaknya pasangan baju dan celana yang dapat digunakan oleh Budi sebanyak 6 pasang yaitu baju putih, celana hitam, baju putih, celana cokelat, baju batik, celana hitam, baju batik, celana cokelat, baju cokelat, celana hitam, dan baju cokelat, celana cokelat. *. Cara II Menggunakan aturan perkalian. Pada soal ini kita akan menentukan banyaknya pasangan baju dan celana, artinya setiap pasangan harus memuat baju dan celana sehingga SEKALIGUS kedua-duanya baju dan celana harus ada sehingga kita bisa menggunakan aturan perkalian secara langsung. *. Unsur pertama adalah baju, ada 3 pilihan baju, sehingga $ k_1 = 3 $. *. Unsur kedua adalah celana, ada 2 pilihan celana, sehingga $ k_2 = 2 $. *. Total pasangan baju dan celanan Total pasangan $ = k_1 \times k_2 = 3 \times 2 = 6 $. Jadi, banyaknya pasangan baju dan celana ada 6 pasang berbeda. 2. Iwan memiliki 5 jenis baju yang berbeda, 2 jenis celana yang berbeda, 2 topi yang berbeda, 3 dasi yang berbeda, dan 4 pasang sepatu serta kaosnya. Tentukan ada berapa banyak cara Iwan menggunakan seragam sekolah jika semua jenis harus dipakai? Penyelesaian Total seragam yang mungkin terbentuk adalah $ 5 \times 2 \times 2 \times 3 \times 4 = 240 \, $ pilihan. Jadi, ada 240 pilihan seragam yang bisa dipakai oleh Iwan. 3. Untuk menuju kota C dari kota A harus melewati kota B. Dari kota A ke kota B melewati 4 jalur dan dari kota B ke kota C ada 3 jalur. Dengan berapa jalur Budi dapat pergi dari kota A ke kota C? Penyelesaian *. Kita gunakan aturan perkalian karena jalur AB dan BC harus ditempuh semua, artinya ketiga jalur SEKALIGUS dilewati untuk perjalanan dari kota A ke kota C. Total jalur $ = 4 \times 3 = 12 \, $ jalur. 4. Seorang ingin membuatkan plat nomor kendaraan yang terdiri dari 4 angka yang dipilih dari angka-angka 1, 2, 3, 4, 5 dan dalam plat nomor itu tidak boleh ada angka yang sama. Berapa banyak plat nomor dapat dibuat? Penyelesaian *. Plat nomor tidak boleh ada angka yang berulang, artinya angka yang sudah dipakai tidak boleh dipakai lagi. Misalkan palat nomor 2113 tidak boleh karena angka 1 berulang. Contoh yang boleh adalah plat nomor 2134, 1234, 1235, dan lainnya. *. Misalkan kita buat 4 buah kotak kosong yaitu kotak a, b, c dan d sebab nomor kendaraan itu terdiri dari 4 angka. Berikut cara pengisian masing-masing kotak Pilihan angkanya adalah 1, 2, 3, 4, 5, artinya totalnya ada 5 pilihan angka. i. Kotak a, dapat diisi angka 1, 2, 3, 4, atau 5 sehingga ada 5 cara. ii. Kotak b, dapat diisi dengan 4 pilihan bilangan karena satu bilangan sudah dipakai untuk kotak a. iii. Kotak c, dapat diisi dengan 3 pilihan bilangan karena dua bilangan sudah dipakai untuk kotak a dan b. iv. Kotak d, dapat diisi dengan 2 pilihan bilangan karena tiga bilangan sudah dipakai untuk kotak a, b, dan c. Sehingga gambar lengkap kotaknya adalah Banyaknya plat nomor $ = 5 \times 4 \times 3 \times 2 = 120 \, $ plat nomor. Jadi, banyaknya plat nomor yang bisa dibuat adalah 120 plat nomor. 5. Seorang ingin membuatkan plat nomor kendaraan yang terdiri dari 4 angka yang dipilih dari angka-angka 1, 2, 3, 4, 5 dan dalam plat nomor itu boleh ada angka yang sama. Berapa banyak plat nomor dapat dibuat? Penyelesaian Soal ini sebenarnya mirip dengan soal nomor 4, hanya saja syaratnya yang dibedakan sedikt. Plat nomor boleh ada angka yang sama, artinya angka yang sudah dipakai boleh dipakai lagi. *. Kita buat 4 kota karena plat nomor terdiri dari 4 angka saja. Pilihan angkarnya adalah 1, 2, 3, 4, 5, artinya totalnya ada 5 pilihan angka. Cara pengisian setiap kotak i. Kotak I, dapat diisi angka 1, 2, 3, 4, atau 5 sehingga ada 5 cara. ii. Kotak II, dapat diisi dengan 5 pilihan angka juga karena angka yang sudah dipakai pada kotak I bisa dipakai lagi pada kotak II. Begitu juga dengan kotak III dan kotak IV ada 5 pilihan angka masing-masing. Banyaknya plat nomor $ = 5 \times 5 \times 5 \times 5 = 625 \, $ plat nomor. Jadi, banyaknya plat nomor yang bisa dibuat adalah 625 plat nomor. Aturan Penjumlahan pada kaidah pencacahan Jika terdapat $ n \, $ peristiwa yang saling lepas, $k_1 = \, $ banyak cara pada peristiwa pertama $ k_2 = \, $ banyak cara pada peristiwa kedua $ k_3 = \, $ banyak cara pada peristiwa ketiga dan seterusnya sampai $k_n = \, $ banyak cara pada peristiwa ke-$n$ Maka banyak cara untuk $ n \, $ buah peristiwa secara keseluruhan adalah $ k_1 + k_2 + k_3 + ... + k_n $ Catatan Aturan penjumlahan biasanya digunakan untuk beberapa kejadian yang "TIDAK SEKALIGUS TERJADI" artinya yang terjadi hanya salah satu saja atau bisa dibilang "PILIHAN" dan biasanya menggunakan kata penghubung "ATAU" Contoh soal aturan penjumlahan 6. Di rumahnya Wati terdapat 3 jenis sepeda berbeda, 2 jenis sepeda motor berbeda, dan 2 mobil yang berbeda. Jika Wati ingin berpergian, ada berapa cara Wati menggunakan kendaraan yang ada di rumahnya? Penyelesaian Pada kasus ini, ada tiga pilihan kendaraan yaitu sepeda, sepeda motor, dan mobil. Wati tidak mungkin menggunakan SEKALIGUS ketiga jenis kendaraan tersebut yang artinya Wati harus memilih salah satu jenis kendaraan saja. Sehingga kita bisa menggunakan aturan penjumlahan pada kasus ini. *. Menentukan banyak cara menggunakan kendaraan Total cara $ = 3 + 2 + 2 = 7 \, $ cara. Jadi, ada 7 cara pilihan kendaraan yang bisa digunakan oleh Wati. 7. Dari Kota A menuju kota D dapat melalui beberapa jalur pada gambar di bawah ini. Berapa banyak kemungkinan jalur yang dapat dilalui dari Kota A ke Kota D? Penyelesaian *. Untuk perjalanan dari kota A ke kota D bisa melalui kota B atau kota C. Beberapa jalur yang bisa ditempuh Jalur Pertama jalurnya A - B - D A - B ada 4 jalan dan B - D ada 3 jalan, toal jalur pertama $ = 4 \times 3 = 12 $ Jalur Kedua jalurnya A - C - D A - C ada 3 jalan dan C - D ada 3 jalan, toal jalur kedua $ = 3 \times 3 = 9 $ *. Keseluruhan jalur yang ditempuh adalah melalui jalur pertama atau jalur kedua sehingga bisa menggunakan aturan penjumlahan. Total jalur = jalur pertama $ + \, $ jalur kedua = $ 12 + 9 = 21 \, $. Jadi, banyak kemungkinan jalur yang ditempuh dari A ke D ada 21 jalur. Definisi dan Notasi Faktorial Misalkan ada $ n \, $ bilangan asli, Notasi faktorial adalah $ n! \, $ dibaca "$n \, $ faktorial". Cara penghitungannya $ n! = n \times n-1 \times n-2 \times n-3 \times ... \times 3 \times 2 \times 1 $ dengan $ 0! = 1 $. Contoh soal faktorial 8. Tentukan nilai faktorial berikut ini, a. 5! b. 3! c. 6! d. $ \frac{7!}{5!} $ e. $ 3! \times 2 ! $ f. $ \frac{8!}{3! \times 6!} $ Penyelesaian a. $ 5! = 5 \times 4 \times 3 \times 2 \times 1 = 120 $ b. $ 3! = 3 \times 2 \times 1 = 6 $ c. $ 6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720 $ d. $ \frac{7!}{5!} = \frac{7 \times 6 \times 5!}{5!} = 7 \times 6 = 42 $ e. $ 3! \times 2 ! = 3 \times 2 \times 1 \times 2 \times 1 = 6 \times 2 = 12 $ f. $ \frac{8!}{3! \times 6!} = \frac{8 \times 7 \times 6!}{3 \times 2 \times 1 \times 6!} = \frac{8 \times 7 }{3 \times 2 \times 1 } = \frac{28}{3} $ 9. Nyatakan bentuk berikut dalam bentuk faktorial a. $ 4 \times 5 \times 6 $ b. $ \frac{8 \times 7 \times 6 \times 5}{1 \times 2 \times 3 \times 4} $ Penyelesaian a. $ \begin{align} 4 \times 5 \times 6 = \frac{1 \times 2 \times 3 \times 4 \times 5 \times 6}{1 \times 2 \times 3 } = \frac{6!}{3!} \end{align} $ b. $ \begin{align} \frac{8 \times 7 \times 6 \times 5}{1 \times 2 \times 3 \times 4} = \frac{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{1 \times 2 \times 3 \times 4 \times 4 \times 3 \times 2 \times 1 } = \frac{8!}{4! \times 4!} \end{align} $ 10. Hitunglah nilai faktorial dari $ \frac{5}{7!} - \frac{1}{6!} + \frac{24}{8!} $ Penyelesaian *. Karena penyebutnya ada tiga jenis, maka kemunngkinan jawabannya ada 3 bentuk yang nilainya tetap sama. $ \begin{align} \frac{5}{7!} - \frac{1}{6!} + \frac{10}{8!} & = \frac{8 \times 5}{8 \times 7!} - \frac{8 \times 7 \times 1 }{8 \times 7 \times 6!} + \frac{24}{8!} \\ & = \frac{40}{8!} - \frac{56 }{8!} + \frac{24}{8!} \\ & = \frac{40 - 56 + 24}{8!} \\ & = \frac{8}{8!} \\ & = \frac{8}{8 \times 7!} \\ & = \frac{1}{7!} \\ & = \frac{1}{7 \times 6!} \\ \end{align} $ Jadi hasilnya adalah $ \frac{8}{8!} \, $ atau $ \frac{1}{7!} \, $ atau $ \frac{1}{7 \times 6!} $. 11. Tentukan nilai $ n \, $ , jika $ \frac{n! - n-2!}{n-1!} = 1 $ Penyelesaian $ \begin{align} \frac{n! - n-2!}{n-1!} & = 1 \\ \frac{n \times n-1 \times n-2! - n-2!}{n-1 \times n-2!} & = 1 \\ \frac{n \times n-1 - 1}{n-1 } & = 1 \\ \frac{n^2 - n - 1}{n-1 } & = 1 \\ n^2 - n - 1 & = n - 1 \\ n^2 - 2n & = 0 \\ nn-2 & = 0 \\ n = 0 \vee n = 2 \end{align} $ Yang memenuhi adalah untuk $ n = 2 $ . Jadi, diperoleh nilai $ n = 2 $.
Disini, Operand 1 dan Operand 2 adalah bagian rumus yang nantinya bisa diubah atau variable. Masing-masing ada di lokasi B14 dan B15. Maka untuk rumus penjumlahan, pengurangan, perkalian, dan pembagian di Excel, kita gunakan lokasi cell tersebut. Misalnya: penjumlahan: =B14+B15; pengurangan: =B14-B15; perkalian: =B14*B15; pembagian: =B14/B15
Urutan operasi adalah serangkaian aturan untuk menyelesaikan operasi hitung. Urutan operasi memastikan semua orang mendapatkan hasil yang sama. Banyak orang mengingat urutan operasi sebagai PEMDAS "P"arentheses/tanda kurung, "E"xponent/eksponen, "M"ultiplication/perkalian, "D"ivision/pembagian, "A"ddition/penjumlahan, dan "S"ubtraction/pengurangan.Urutan operasi hitung adalah kumpulan aturan untuk mengerjakan operasi hitung. Aturan tersebut memastikan agar semua orang mendapatkan jawaban yang color 7854ab, start text, P, end text, end color 7854abarentheses atau tanda kurung Kita mengerjakan apa yang ada di dalam kurung terlebih dahulu, sebelum yang lainnya. Contohnya, 2, times, start color 7854ab, left parenthesis, 3, plus, 1, right parenthesis, end color 7854ab, equals, 2, times, 4, equals, color 11accd, start text, E, end text, end color 11accdxponent atau pangkat Kita mengerjakan pangkatnya terlebih dahulu sebelum mengalikan, membagi, menjumlahkan, atau mengurangi. Contohnya, 2, times, start color 11accd, 3, squared, end color 11accd, equals, 2, times, 9, equals, color 1fab54, start text, M, end text, end color 1fab54ultiplication atau perkalian dan start color 1fab54, start text, D, end text, end color 1fab54ivision atau pembagian Kita mengalikan dan membagi sebelum menjumlahkan atau mengurangi. Contohnya, 1, plus, start color 1fab54, 4, divided by, 2, end color 1fab54, equals, 1, plus, 2, equals, color e07d10, start text, A, end text, end color e07d10ddition atau penjumlahan dan start color e07d10, start text, S, end text, end color e07d10ubtraction atau pengurangan Terakhir, kita jumlahkan dan orang mengingat urutan pengerjaan operasi hitung sebagai start color 7854ab, start text, P, end text, end color 7854ab, start color 11accd, start text, E, end text, end color 11accd, start color 1fab54, start text, M, D, end text, end color 1fab54, start color e07d10, start text, A, S, end text, end color e07d10 diucapkan sesuai ejaannya, di mana "P" adalah parentheses tanda kurung, "E" adalah exponent pangkat, dan penting Ketika kita mempunyai lebih dari satu operasi hitung yang setipe, kita kerjakan dari kiri ke kanan. Aturan ini penting ketika pengurangan atau pembagian ada di sisi kiri operasi hitung, seperti 4, minus, 2, plus, 3 atau 4, divided by, 2, times, 3 lihat contoh 3 di bawah ini untuk mengerti mengapa aturan ini penting.Contoh 1Kerjakan 6, times, 4, plus, 2, times, tidak ada tanda dalam kurung atau pangkat, kita langsung mengerjakan perkalian dan space, 6, times, 4, plus, 2, times, 3equals, start color 28ae7b, 6, times, 4, end color 28ae7b, plus, 2, times, 3Kalikan start color 1fab54, 6, end color 1fab54 dan start color 1fab54, 4, end color 24, plus, start color 28ae7b, 2, times, 3, end color 28ae7bKalikan start color 1fab54, 2, end color 1fab54 dan start color 1fab54, 3, end color start color e07d10, 24, plus, 6, end color e07d10Jumlahkan start color e07d10, 24, end color e07d10 dan start color e07d10, 6, end color 30... dan kita selesai!Perhatikan Kita mengerjakan semua perkalian sebelum menjumlahkan. Jika kita mengerjakan 24, plus, 2 sebelum mengalikan 2, times, 3, kita akan mendapatkan jawaban yang 2Kerjakan 6, squared, minus, 2, left parenthesis, 5, plus, 1, plus, 3, right space, 6, squared, minus, 2, left parenthesis, 5, plus, 1, plus, 3, right parenthesisequals, 6, squared, minus, 2, left parenthesis, start color 7854ab, 5, plus, 1, plus, 3, end color 7854ab, right parenthesisJumlahkan start color 7854ab, 5, plus, 1, plus, 3, end color 7854ab di dalam tanda kurung terlebih start color 11accd, 6, end color 11accd, start superscript, start color 11accd, 2, end color 11accd, end superscript, minus, 2, left parenthesis, 9, right parenthesisHitung start color 11accd, 6, squared, end color 11accd, yaitu 6, dot, 6, equals, 36, minus, start color 1fab54, 2, left parenthesis, 9, right parenthesis, end color 1fab54Kalikan start color 1fab54, 2, end color 1fab54 dan start color 1fab54, 9, end color start color e07d10, 36, minus, 18, end color e07d10Kurangi 18 dari 18... dan kita selesai!Contoh 3Kerjakan 7, minus, 2, plus, yang benar adalah dengan mengerjakan dari kiri ke Walaupun "A" untuk Addition penjumlahan terletak sebelum "S" untuk Subtraction pengurangan dalam PEMDAS, tidak berarti kita perlu menjumlahkan sebelum mengurangi. Penjumlahan dan pengurangan ada pada "tingkatan" yang sama pada urutan pengerjaan operasi hitung. Hal ini juga berlaku untuk perkalian dan mempelajari lebih banyak mengenai urutan pengerjaan operasi hitung? Lihatlah video
OUGxs. pyr0bqi6ws.pages.dev/96pyr0bqi6ws.pages.dev/168pyr0bqi6ws.pages.dev/546pyr0bqi6ws.pages.dev/185pyr0bqi6ws.pages.dev/94pyr0bqi6ws.pages.dev/32pyr0bqi6ws.pages.dev/374pyr0bqi6ws.pages.dev/500
aturan perkalian pembagian penjumlahan dan pengurangan